Home Page + Blog Site Contents TV Interview 9/3/2017 10/5/2016 TV Interview Radio Interview Report Contents &Section Links MSL Ultraviolet 2018 Global Dust Storm MSL Year 4 Spring Weather MSL Yr 3-4 Winter Weather MSL Yr 3 Fall Data MSL Year 3 Summer Data MSL Year 3 Spring Data MSL Yr 2-3 Winter Data MSL Yr 2 Fall Data MSL Yr 2 Summer Data MSL Weather Year 2 MSL Weather Year 1 155-Mile high Mars Plume March 25 2017 Plume Sol 370, 1160,1161, 1300&1301 pressure anomalies MSL Hi Air & Ground Temps MSL Low Temps Warm winter ground temps & life RUNNING WATER ON MARS Report Abstract to 1.2 Report Sec.2-2.1 Report Sec.2.2-2.4 Report 2.5-2.5.2 Report 2.5.3-2.7 Report 3-4.1.2 Report 5 to 6 Report 7-7.2.1 Report 8 Report 9 Report 10 Report 11 Global Dust Storm Report 12 Report 13-13.2 Report 13.3-13.5 Report 13.6 Report 14-15 Report 15.1 Report 15.2-15.3 Report 15.4-15.6.2 Report 15.6.1-15.6.3 Report 15.6.4-15.7 Report 16-16.1 Report New 17-20 Report Afterword Report References Report 21 Annex Links Report figure links Diurnal air temp. variation Oxygen&Trees on Mars? Phobos Monolith Beagle 2 found Adiabatics Concession by Ashima Old MSL Weather 1 Old MSL Weather 2 High and low pressures normalized Soil 2% water MSL Temp. ∆ Mast to Ground Relative humidity Mars sky color Tavis Sensor Suspicion Vailsala Sensor: Phoenix&MSL Mars Temps Fahrenheit Pathfinder pressures Wind Booms & Disinformation Ingersoll Debate Daylight-math-fix Curiosity Geology Early MSL Weather Reports Landing altitudes Mars Mission History & Sites Nuc on Mars? Ashima/MIT GCM Critique NASA alters temp. data Viking pressure sensors failed Dust Storm Nonsense JPL Press Conference Critique 1 Navigating Mars Phobos Grunt Failure Moving sand & Mars winds Moving rock Data Fudge Fossil found on Mars? Organic Chem found on Mars MSL Sol 200 Anomaly Gil Levin & Labeled Release - Part 1 Levin & Labeled Release - Pt. 2 - Roswell Link Brine on Mars Lights on Ceres Yr 1 Table 1 Spherical life on Mars? Scale heights REMS flaws MSL Daylength &Temp Missing data ExoMars crash Lima 3 Desai & EDL Sea at Utopia Planitia Mars Mars winter vs. summer temps Rebuttal of REMS Report Unrealistic Ground Low Temps Mt. Sharp pressures & scale height Opacity at MSL Helo to Mars

Mars Pathfinder Issues (Updated 9/14/2017)



       For Pathfinder (with an air access tube just 2 mm in diameter), the upper range of the transducer was only 12 mbar during descent, but only 10 mbar on the surface.83

        A 10 mbar limit seems very strange given the Viking-2 10.72 mbar pressure seen. Note that the terrestrial dust storm which hit Luke Air Force Base and Phoenix, Arizona on July 5, 2011 increased air pressure by at least 6.6 mbar, and given that both terrestrial and Martian dust storms can turn day to night, the decision to reduce pressure sensitivities of Pathfinder, Phoenix and MSL landers seems highly ill-advised. There remains the question of what happened to the second Pathfinder sensor ordered that could measure up to 1,034 mbar (15 psia) shown on Figure 10B. Perhaps NASA is not as dumb as they seem to be, and they flew that sensor with a program inserted to cut reported pressures to 1% of what it actually measured. We really need to know the final disposition of this transducer, corresponding to Tavis Dash No. 1 on Tavis CAD Diagram 10484.

        What were the Pathfinder pressures made public? Lower than expected. MPF landed on July 4, 1997 at an elevation of -3.682 km, most similar to Viking 1 which sat at -3.627 km. For MPF it was late northern summer at Ls 142.7. As noted earlier in Section 7, Schofield et al. (1997)67 indicate that Pathfinder had no pressure data for the most crucial sol – its first operational day on Mars (JPL wiped out all pressure data for the first 9 days of MSL). The reason given by the above reference is there were “various spacecraft software reset and downlink problems.” MPF pressures are shown on Figure 45.

Figure 45: Adapted from Science. Pressures reported by MPF. None is given for the critical landing day.

       Two sols worth of MPF hourly pressures are shown on Figure 46 where they are compared to the only sol of published hourly pressure data for MSL.

       At first it seemed a bit surprising that MSL and Pathfinder displayed a similar diurnal pressure cycle on Figure 46. Pathfinder had no RTG heater on board. However, the Pathfinder battery was used to heat the probe’s electronics to slightly above the expected nighttime temperatures on Mars.95So again, at local midnight, measured pressures went up because the heater was operating at that time. What was being measured was not ambient pressure. It was just the pressure behind the (likely) clogged dust filter.

Figure 46: Adapted from Science. Diurnal pressure cycles for MSL and Mars Pathfinder.