MARS CORRECT BASIC REPORT - SECTION 10

Home Page + Blog Site Contents TV Interview 9/3/2017 10/5/2016 TV Interview Radio Interview Report Contents &Section Links MSL Ultraviolet 2018 Global Dust Storm Seismic Activity on Mars MSL Year 4 SUMMER Weather MSL Year 4 Spring Weather MSL Yr 3-4 Winter Weather MSL Yr 3 Fall Data MSL Year 3 Summer Data MSL Year 3 Spring Data MSL Yr 2-3 Winter Data MSL Yr 2 Fall Data MSL Yr 2 Summer Data MSL Weather Year 2 MSL Weather Year 1 155-Mile high Mars Plume March 25 2017 Plume Sol 370, 1160,1161, 1300&1301 pressure anomalies MSL Hi Air & Ground Temps MSL Low Temps Warm winter ground temps & life RUNNING WATER ON MARS Report Abstract to 1.2 Report Sec.2-2.1 Report Sec.2.2-2.4 Report 2.5-2.5.2 Report 2.5.3-2.7 Report 3-4.1.2 Report 5 to 6 Report 7-7.2.1 Report 8 Report 9 Report 10 Report 11 Global Dust Storm Report 12 Report 13-13.2 Report 13.3-13.5 Report 13.6 Report 14-15 Report 15.1 Report 15.2-15.3 Report 15.4-15.6.2 Report 15.6.1-15.6.3 Report 15.6.4-15.7 Report 16-16.1 Report New 17-20 Report Afterword Report References Report 21 Annex Links Report figure links Diurnal air temp. variation Oxygen&Trees on Mars? Phobos Monolith Beagle 2 found Adiabatics Concession by Ashima Old MSL Weather 1 Old MSL Weather 2 High and low pressures normalized Soil 2% water MSL Temp. ∆ Mast to Ground Relative humidity Mars sky color Tavis Sensor Suspicion Vailsala Sensor: Phoenix&MSL Mars Temps Fahrenheit Pathfinder pressures Wind Booms & Disinformation Ingersoll Debate Daylight-math-fix Curiosity Geology Early MSL Weather Reports Landing altitudes Mars Mission History & Sites Nuc on Mars? Ashima/MIT GCM Critique NASA alters temp. data Viking pressure sensors failed Dust Storm Nonsense JPL Press Conference Critique 1 Navigating Mars Phobos Grunt Failure Moving sand & Mars winds Moving rock Data Fudge Fossil found on Mars? Organic Chem found on Mars MSL Sol 200 Anomaly Gil Levin & Labeled Release - Part 1 Levin & Labeled Release - Pt. 2 - Roswell Link Brine on Mars Lights on Ceres Yr 1 Table 1 Spherical life on Mars? Scale heights REMS flaws MSL Daylength &Temp Missing data ExoMars crash Lima 3 Desai & EDL Sea at Utopia Planitia Mars Mars winter vs. summer temps Rebuttal of REMS Report Unrealistic Ground Low Temps Mt. Sharp pressures & scale height Opacity at MSL Helo to Mars

Mars Global Surveyor Excessive Aeroraking (Updated 9/14/2018)

EXCESSIVE DECELERATION DURING AEROBRAKING OPERATIONS.      

       It is cost efficient to slow a spacecraft approaching a planet like Mars by aerobraking – dipping the probe into the atmosphere to use free drag rather than expensive fuel.  This was done with Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO).  In both cases, more air was encountered than expected.

10.1 Mars Global Surveyor (MGS).  

       When MGS was launched in 1996, the intent was to achieve a circular pole-to-pole, Sun-synchronous orbit around Mars with an altitude of approximately 300 km above the surface and an orbital period of just under 2 hours. In an attempt to accomplish this orbit using minimal fuel, MGS used aerobraking. It was deliberately flown through the upper atmosphere of Mars during periapse to use the aerodynamic drag forces to modify its orbital parameters.  The effort did not go as planned and the early maneuvers led to excessive decelerations (Read & Lewis 2004, 11).78

       If Mars has a higher than expected atmospheric density, it would explain unexpected excessive decelerations.  As shown in Figure 40 and discussion below, it is believed that a dust storm produced the unexpected drag, but the effects at a normalized altitude of 121 km (75 miles) seem quite high for a planet that is supposed to have an average surface pressure of only about 6.1 mbar.

       Johnston et al.  (1998)81 reported that (1) “On the onset of a dust storm, the atmospheric density could more than double in a 48 hour time period,” and (2) “If during aerobraking, the spacecraft experiences dynamic pressure values greater than this limit line, the periapsis altitude of the orbit must be raised immediately in order to re-establish the 90% atmospheric density capability.”  Both happened. 

       Note the tremendous increase in dynamic pressure shown on Figure 39.  At an altitude normalized to 121 km, the dust storm caused dynamic pressure to rise from about 0.15 N/m2 on November 9th, 1997 to 0.84 N/m2 on December 7, 1997. While the Johnson et al. (1998) article referred to atmospheric density more than doubling during a dust storm, the increase in dynamic pressure felt at 121 km over four weeks was 5.6 times the pre-storm values.

 

Figure 39 – Actual Dynamic Pressure – Normalized to an Altitude of 121 km (reproduced from Johnson, et al, 1998)

 

10.2 Mars Reconnaissance Orbiter (MRO).  

        MRO also employed an aerobraking process. Its navigation team relied on an atmospheric model called the Mars-GRAM (Global Reference Atmospheric Model).  Mars-GRAM is a computer database of information from what previous missions have encountered. It provided a prediction of the atmospheric density, giving the navigators an estimate of how far down into the atmosphere the spacecraft should go.

       The atmospheric density that MRO actually experienced was much different than what was predicted by the Mars GRAM (Atkinson, 2006).82 Two quotes are most notable in the Atkinson article:

(1) “At some points in the atmosphere, we saw a difference in the atmospheric density by a factor of 1.3, which means it was 30% higher than the model,” said Han You, Navigation Team Chief for MRO. “That’s quite a bit, but around the South Pole we saw an even larger scale factor of up to 4.5, so that means it was 350% off of the Mars GRAM model.”

(2) “When we first started out at a somewhat higher altitude, the Mars GRAM model was doing pretty well,” said Richard Zurek, Project Scientist for MRO. “When we got to the lower altitude the scale factor to which it was off was larger and it became even larger as periapsis moved toward the South Pole.”

      

      

This article is continued with Section 11 HERE.