THE CASE FOR BRINY WATER AT GALE CRATER, MARS

Home Page + Blog Site Contents 10/5/2016 TV Interview Radio Interview Report Contents &Section Links MSL Ultraviolet MSL Yr 3 Fall Data MSL Year 3 Summer Data MSL Year 3 Spring Data MSL Yr 2-3 Winter Data MSL Yr 2 Fall Data MSL Yr 2 Summer Data MSL Weather Year 2 MSL Weather Year 1 Sol 370, 1160,1161, 1300&1301 pressure anomalies MSL Hi Air & Ground Temps MSL Low Temps Warm winter ground temps & life RUNNING WATER ON MARS Report Abstract to 1.2 Report Sec.2-2.1 Report Sec.2.2-2.4 Report 2.5-2.5.2 Report 2.5.3-2.7 Report 3-4.1.2 Report 5 to 6 Report 7-7.2.1 Report 8-9 Report 10-11 Report 12-12.2 Report 12.3-12.5 Report 12.6 Report 13-14 Report 14.1 Report 14.2-14.3 Report 14.4-14.6.2 Report 14.6.3-4 Report 15-19 Report Afterword Report 20 Annex Links Report figure links Diurnal air temp. variation Oxygen&Trees on Mars? Beagle 2 found Adiabatics Concession by Ashima Old MSL Weather 1 Old MSL Weather 2 High and low pressures normalized Soil 2% water MSL Temp. ∆ Mast to Ground Relative humidity Mars sky color Tavis Sensor Suspicion Vailsala Sensor: Phoenix&MSL Mars Temps Fahrenheit Pathfinder pressures Wind Booms & Disinformation Ingersoll Debate Daylight-math-fix Curiosity Geology Early MSL Weather Reports Landing altitudes Mars Mission History & Sites Nuc on Mars? Aldrin's Phobos monolith Ashima/MIT GCM Critique NASA alters temp. data Viking pressure sensors failed Dust Storm Nonsense JPL Press Conference Critique 1 Navigating Mars Phobos Grunt Failure Moving sand & Mars winds Moving rock Data Fudge Fossil found on Mars? Organic Chem found on Mars MSL Sol 200 Anomaly Gil Levin & Labeled Release - Part 1 Levin & Labeled Release - Pt. 2 - Roswell Link 155-Mile high Mars Plume Brine on Mars Lights on Ceres Yr 1 Table 1 Spherical life on Mars? Full Report Contents Scale heights REMS flaws MSL Daylength &Temp Missing data ExoMars crash Desai & EDL Sea at Utopia Planitia Mars Mars winter vs. summer temps Rebuttal of REMS Report Unrealistic Ground Low Temps Mt. Sharp pressures & scale height

While we believe there is brine on Mars, JPL did a poor job of laying out its case for it. Updated on 5/25/2016.

NOTE: ON SEPTEMBER 28, 2015 NASA EXPANDED UPON THEIR CLAIM ABOUT BRINE ISSUED ON 13 APRIL 2015. OUR CRITICISM OF THEIR APRIL ANNOUNCEMENT REMAINS BELOW, HOWEVER OUR REVIEW OF THEIR NEW ANNOUNCEMENT IS ON THIS SITE AT RUNNING WATER (http://marscorrect.com/photo5_9.html). 

CRITQUE OF JPL ARTICLE OF 13 APRIL 2015 ENTITLED NASA MARS ROVER’S WEATHER DATA BOLSTER CASE FOR BRINE.

This article (by Barry S. Roffman) will directly quote the NASA article cited above, pausing to critique it where appropriate. Our comments and critique will be highlighted with dark blue fonts.

JPL: Fast Facts:

› Conditions that might produce liquid brine in Martian soil extend closer to the equator than expected

› Perchlorate salt in soil can pull water molecules from the atmosphere and act as anti-freeze

› Presence of brine would not make Curiosity's vicinity favorable for microbes 

       Martian weather and soil conditions that NASA's Curiosity rover has measured, together with a type of salt found in Martian soil, could put liquid brine in the soil at night. Perchlorate identified in Martian soil by the Curiosity mission, and previously by NASA's Phoenix Mars Lander mission, has properties of absorbing water vapor from the atmosphere and lowering the freezing temperature of water. This has been proposed for years as a mechanism for possible existence of transient liquid brines at higher latitudes on modern Mars, despite the Red Planet's cold and dry conditions.

       New calculations were based on more than a full Mars year of temperature and humidity measurements by Curiosity.

ROFFMAN COMMENT: Not a single daily weather report put out between the landing and at least Sol 1,349 includes anything for relative humidity except “value not available.” Further, every single sol had opacity listed as "sunny." See Figure 1.

Figure 1 above - The relative humidity data for sols 10, 500, 954 and 1349 is the same as that put out by the REMS Team/JPL for all other Martian days - "Value not available."

JPL CONTINUES:  They indicate that conditions at the rover's near-equatorial location were favorable for small quantities of brine to form during some nights throughout the year, drying out again after sunrise. Conditions should be even more favorable at higher latitudes, where colder temperatures and more water vapor can result in higher relative humidity more often.

ROFFMAN: As background, most of this response is taken from the article found at http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=49342. On September 29, 2011 we learned that, "New analysis of data sent back by the SPICAM (Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars) spectrometer on board ESA's Mars Express spacecraft has revealed for the first time that the planet's atmosphere is supersaturated with water vapor. This surprising discovery has major implications for understanding the Martian water cycle and the historical evolution of the atmosphere." In the journal Science, an international team led by Luca Maltagliati of the Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS) in Guyancourt, France, described SPICAM observations at infrared wavelengths that for the first time provide evidence for the existence of supersaturated water vapor on Mars. Water vapor is a very dynamic trace gas, and one of the most seasonally variable atmospheric constituents on Mars. On Earth and on Mars water vapor condenses around tiny dust or aerosol particles or salts when the atmospheric temperature drops below a certain "dew point". The atmosphere is then said to be "saturated", since it cannot hold any more moisture at that temperature and pressure. Any water vapor in excess of the "dew point" will normally condense to form droplets or icy crystals. But supersaturation may occur when some of the water vapor remains in the atmosphere, instead of condensing or freezing. When condensation nuclei (assumed to be dust aerosols on Mars) are too rare, condensation is impeded, leaving substantial amounts of excess vapor. The real Roffman comment here is that given the extraordinary amount of dust in Martian air it is not clear under what conditions dust aerosols would in fact be so low as to not accommodate the amount of water in an atmosphere of a planet where there is no ocean, unless that ocean is underground.

Figure 2 - Transport of water vapor in the Martian atmosphere. (Click on the image for more detail on the processes depicted.) Credit: ESA/AOES Medialab

Until 2011 it was generally assumed that such supersaturation cannot exist in the cold Martian atmosphere: any water vapor in excess of saturation was expected to be converted immediately into ice. However, the SPICAM data have revealed that supersaturation occurs frequently in the middle atmosphere – at altitudes of up to 50 km above the surface – during the aphelion season, the period when Mars is near its farthest point from the Sun. The levels of supersaturation found on Mars were up to 10 times greater than those found on Earth. There is much more water vapor in the upper Martian atmosphere than anyone ever imagined before 2011. Previous models (based on "accepted" Martian air density and  air pressure of 6.1 mbar at areoid) greatly underestimated the quantities of water vapor at heights of 20–50 km, with as much as 10 to 100 times more water than expected at this altitude. The supersaturation levels are likely to plummet in the southern summer, when dust storms inject large amounts of aerosols into the atmosphere, increasing the supply of condensation nuclei. Reference publication: "Evidence of Water Vapor in Excess of Saturation in the Atmosphere of Mars", by L. Maltagliati, F. Montmessin, A. Fedorova, O. Korablev, F. Forget, and J.-L. Bertaux, published in the 30 September 2011 issue of Science.

JPL CONTINUES:

       "Liquid water is a requirement for life as we know it, and a target for Mars exploration missions," said the report's lead author, Javier Martin-Torres of the Spanish Research Council, Spain, and Lulea University of Technology, Sweden, and a member of Curiosity's science team.

ROFFMAN: These are wonderful words, but they do not represent reality at JPL. Reality is that MSL has no life detection capabilities, and none is planned fpr our next Mars lander, due to blast off in 2020. There have been zero life detection experiments flown to Mars by the U.S. since 1976 when the labeled-release experiments on Viking 1 and Viking 2 detected life at landing sites 4,000 miles apart. See our article about Gil Levin and Labeled-Release.

JPL CONTINUES: "Conditions near the surface of present-day Mars are hardly favorable for microbial life as we know it, but the possibility for liquid brines on Mars has wider implications for habitability and geological water-related processes."

ROFFMAN: This is false. Life adapts and the same perchlorates that keep water/brine from freezing on Mars at night are almost certainly a part of Martian cell anatomy. In a paper written by Geoffrey A. Landis of NASA John Glenn Research Center we read, "any present Martian microorganisms would be similar to terrestrial halophiles."

JPL CONTINUES: The weather data in the report published today in Nature Geosciences come from the Curiosity's Rover Environmental Monitoring Station (REMS), which was provided by Spain and includes a relative-humidity sensor and a ground-temperature sensor. NASA's Mars Science Laboratory Project is using Curiosity to investigate both ancient and modern environmental conditions in Mars' Gale Crater region. The report also draws on measurements of hydrogen in the ground by the rover's Dynamic Albedo of Neutrons (DAN) instrument, from Russia.

       "We have not detected brines, but calculating the possibility that they might exist in Gale Crater during some nights testifies to the value of the round-the-clock and year-round measurements REMS is providing," said Curiosity Project Scientist Ashwin Vasavada of NASA's Jet Propulsion Laboratory, Pasadena, California, one of the new report's co-authors.

ROFFMAN: Sorry Dr. Vasavada, but a good summary of what what the REMS Team has provided can be summed up in a single word: CRAP. Dr. Gilbert Levin has stated the following:

Requesting extension of their mission, Curiosity scientists proposed continuing its present program. In reviewing this request, NASA’s 2014 Planetary Mission Senior Review panel highlighted this paucity in the mission’s scientific productivity in its report published September 3, 2014. This panel of nationally known planetary science experts found ‘‘problems with the proposal were sufficiently severe they need addressing at the earliest opportunity.’’

The panel criticized that ‘‘only eight drilling samples are planned to be taken during the two year extended mission, that the panel considered a poor science return for such a large investment.’’ Further, the report stated, ‘‘The proposal lacked specific scientific questions and testable hypotheses.’’

There is a beautiful 300-page book that I recently bought entitled MARS UP CLOSE, Inside the Curiosity Mission. As is typical of National Geographic books, the photography is nothing less than spectacular (even offering 3D images of Mars), and the detailed description of MSL personnel offers critical insights into agendas that back honest exploration of Mars (with honest exemplied by Gil Levin) and those that are opposed to such exploration. But what of MSL weather "data" received?  It only has the following to say about weather (page 71):

"The early days were a heady time, as each rover system and then each instrument was started up and found to be in good working order. (One exception was a wind sensor on the REMS instrument that flew off during touchdown)."

My son and I knew early on in our investigations that something was very wrong with the low air pressures published by NASA. But our report title finally had to be changed from CASE FOR HIGHER THAN ADVERTISED MARTIAN AIR PRESSURE published on 11/9/2009 to MARS CORRECT: CRITIQUE OF ALL NASA MARS WEATHER DATA, WITH EMPHASIS ON PRESSURE. Almost  everything NASA has published about Martian weather has been shown to be wrong. For a long time we were not certain as to whether the mistakes were due to human error, or deliberate disinformation. We are now almost certain that the problem is the latter.

JPL CONTINUES:

       Curiosity is the first mission to measure relative humidity in the Martian atmosphere close to the surface and ground temperature through all times of day and all seasons of the Martian year.

ROFFMAN: As was demonstrated above in Figure 1, relative humidity has been noteably absent from all daily weather reports issued by REMS. As for ground temperatures See Figure 3 below. Information put out by Javier-Gomez Elvira for REMS indicates that the ground temperature sensor is only accurate to 10K (18 degrees Fahrenheit). See Figure 3.

Figure 3 - Adapted from a JPL article describing weather instruments on Curiosity. Note the accuracy of the ground temperature sensor.

JPL CONTINUES: Relative humidity depends on the temperature of the air, as well as the amount of water vapor in it.

ROFFMAN COMMENT: Relative humidity is also greatly affected by air pressure, and Martian air pressure is the primary aspect of weather data that we challenge. For the sake of convenience, our abstract is repeated here as follows:

CRITIQUE OF ALL NASA MARS WEATHER DATA,

WITH EMPHASIS ON PRESSURE

 ABSTRACT: We present evidence that NASA is seriously understating Martian air pressure. Our 5-year study critiques 669 sols of highly problematic MSL REMS weather data, and offers an in depth audit of hourly Viking 1 and 2 weather reports. We discuss analysis of technical papers, NASA documents, and personal interviews of transducer designers. We troubleshoot pressures based on radio occultation/spectroscopy, and the small pressure ranges that could be measured by Viking (18 mbar), Pathfinder and Phoenix (12 mbar), and MSL (11.5 mbar – with this pressure measured on its sol 370, though later revised down to 8.65 mbar after we made an issue out of it). Vikings and MSL showed consistent timing of daily pressure spikes. We link this to how gas pressure in a sealed container would vary with Absolute temperature, to heating by radioisotope thermoelectric generators (RTGs), and to dust clots at air access tubes and dust filters. Pathfinder, Phoenix and MSL wind measurement failures are disclosed. Phoenix and MSL pressure transducer design problems are highlighted with respect to confusion about dust filter location, and lack of information about nearby heat sources due to International Traffic and Arms Regulations (ITAR). NASA could not replicate dust devils at 10 mbar. Rapidly filled MER Spirit tracks required wind speeds of 80 mph at the assumed low pressures. These winds were never recorded on Mars. Nor could NASA explain drifting Barchan sand dunes.

        Based on the above and dust devils on Arsia Mons to altitudes of 17 km above areoid (Martian equivalent of sea level), spiral storms with 10 km eye-walls above Arsia Mons, dust storm opacity, snow at Phoenix, excessive aerobraking, and stratus clouds 13 km above areoid, we argue for an average pressure at areoid of ~511 mbar rather than the accepted 6.1 mbar. This pressure grows to 1,050 mbar in the Hellas Basin.

JPL CONTINUES: Curiosity's measurements of relative humidity range from about five percent on summer afternoons to 100 percent on autumn and winter nights.

       Air filling pores in the soil interacts with air just above the ground. When its relative humidity gets above a threshold level, salts can absorb enough water molecules to become dissolved in liquid, a process called deliquescence. Perchlorate salts are especially good at this. Since perchlorate has been identified both at near-polar and near-equatorial sites, it may be present in soils all over the planet.

       Researchers using the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter have in recent years documented numerous sites on Mars where dark flows appear and extend on slopes during warm seasons. These features are called recurring slope lineae, or RSL. A leading hypothesis for how they occur involves brines formed by deliquesence.

       "Gale Crater is one of the least likely places on Mars to have conditions for brines to form, compared to sites at higher latitudes or with more shading. So if brines can exist there, that strengthens the case they could form and persist even longer at many other locations, perhaps enough to explain RSL activity," said HiRISE Principal Investigator Alfred McEwen of the University of Arizona, Tucson, also a co-author of the new report.     

Figure 4 - Recurring Slope Lineae that might be caused by brine flowing on Mars.

JPL CONCLUDES: In the 12 months following its August 2012 landing, Curiosity found evidence for ancient streambeds and a lakebed environment more than 3 billion years ago that offered conditions favorable for microbial life. Now, the rover is examining a layered mountain inside Gale Crater for evidence about how ancient environmental conditions evolved. JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory and Mars Reconnaissance Projects for NASA's Science Mission Directorate, Washington.

       For more information about Curiosity, visit: http://www.nasa.gov/msl andhttp://mars.jpl.nasa.gov/msl/

Media Contact

Guy Webster
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-6278
guy.webster@jpl.nasa.gov 

Dwayne Brown
202-358-1726
dwayne.c.brown@nasa.gov 
2015-127

ROFFMAN CONCLUSION: While the discovery of brine near the equator may come as a surprise to JPL/NASA public affairs personnel (Guy Webster and Dwayne Brown), Guy Webster has thanked us before for corrections we made to REMS and Ashima Research weather reports for winds, day length, Martian month and pressure units. But we believe that NASA is putting out disinformation about the pressure and that it is two orders of magnitude higher than they tell us. There are two examples below of where this figure comes from. The first, shown on Figure 5, indicates that between 30 August 2012 and 5 September 2012 REMS put out pressures that were over 700 hPa (mbar). On September 7, 2012, they changed the units back to Pa and largely left the numbers the same. The second example, shown on Figure 6, indicates that on the same Tavis CAD Diagram 10484 for Mars Pathfinder, there are two pressure transducers. One, the one that supposedly flew to Mars, Pathfinder Tavis Dash No -2 had a 0.174 PSIA limit (12 mbar), but Pathfinder Tavis Dash No -1 had a 15 PSIA limit (1,034 mbar – best suited for Earth-like pressures). My source is a personal communication with Tavis Corporation on 10/29/2009. If, for classified reasons, a decision was made to send Tavis Dash No -1 (1,034 mbar) in place of the 12 mbar transducer, none of the pressure data published by NASA for Pathfinder would be reliable. Nor would we expect honest pressures to come from landers after that. The final disposition of the 15 psia/1.034 mbar transducer is not clear at this time. See Annex G of our Mars Correct report for further information about various Tavis transducers.

Figure 5 - REMS was confused about hPa and Pa pressure units

 

Figure 6 - Reproduced from Tavis CAD Diagram 10484. For Mars Pathfinder Tavis Dash No -2 had a 0.174 PSIA limit (12 mbar), but Pathfinder Tavis Dash No -1 had a 15 PSIA limit (1,034 mbar best suited for Earth-like pressures). Source: Personal communication, Tavis Corporation 10/29/2009